A finite dimensional realization of the mollifier method for compact operator equations
نویسندگان
چکیده
We introduce and analyze a stable procedure for the approximation of 〈f†, φ〉 where f† is the least residual norm solution of the minimal norm of the ill-posed equation Af = g, with compact operator A : X → Y between Hilbert spaces, and φ ∈ X has some smoothness assumption. Our method is based on a finite number of singular values of A and some finite rank operators. Our results are in a more general setting than the one considered by Rieder and Schuster (2000) and Nair and Lal (2003) with special reference to the mollifier method, and it is also applicable under fewer smoothness assumptions on φ.
منابع مشابه
High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملAn Application of Newton Type Iterative Method for Lavrentiev Regularization for Ill-Posed Equations: Finite Dimensional Realization
In this paper, we consider, a finite dimensional realization of Newton type iterative method for Lavrentiev regularization of ill-posed equations. Precisely we consider the ill-posed equation F (x) = f when the available data is f with ‖f − f‖ ≤ δ and the operator F : D(F ) ⊆ X → X is a nonlinear monotone operator defined on a real Hilbert space X . The error estimate obtained under a general s...
متن کاملOn the existence of solution for a $k$-dimensional system of three points nabla fractional finite difference equations
In this paper, we investigate the existence of solution for a k-dimensional system of three points nabla fractional finite difference equations. Also, we present an example to illustrate our result.
متن کاملNumerical solution of two-dimensional fuzzy Fredholm integral equations using collocation fuzzy wavelet like operator
In this paper, first we propose a new method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equations of the second kind based on the fuzzy wavelet like operator. Then, we discuss and investigate the convergence and error analysis of the proposed method. Finally, to show the accuracy of the proposed method, we present two numerical examples.
متن کاملA finite difference method for the smooth solution of linear Volterra integral equations
The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 74 شماره
صفحات -
تاریخ انتشار 2005